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Considered below is the plane, high-Reynolds-number (Re) ,  flow of an incompressible 
fluid through a channel suffering a severe non-symmetric constriction, ‘severe ’ meaning 
‘of typical dimensions comparable with the channel width a* ’. The (mainly inviscid) 
flow description is governed by free streamline theory, to be consistent with the viscous 
incompressible separation from the constriction surface and with a relatively slow eddy 
motion beyond. Separation also occurs far ahead of the constriction, a t  a distance 
O(Ref a*) upstream. Attention is given primarily to the flow features for a particular 
class of slowly varying severe constrictions, from which however the features for the . 
probably more useful classes of slender (i.e. of large length but O(a*) height) and 
moderately severe (i.e. of O(a*) length but small height) Constriction follow, as do 
those for curved or cornered channel flows. I n  all these cases a long-scale flow response 
is induced upstream and downstream and in many cases remarkably simple universal 
formulae for the separation and reattachment positions result. The corresponding 
O(a*) corrections to the upstream separation distance above are also derived. 

1. Introduction 
I n  the field of internal streaming flows there are a great many fundamen.ta1, but 

challenging, theoretical problems. Some clear understanding of such problems seems 
necessary before the more practical internal flow problems most directly associated 
with physiology and engineering may be tackled with any degree of accuracy or 
theoretical certainty. Even for the most basic cases of steady laminar flow of an incom- 
pressible Newtonian fluid through a plane channel or an axisymmetric pipe, with fixed 
walls, the variety of problems introduced purely by the different geometrical arrange- 
ments possible (involving, for example, constriction, dilation, curvature, cornering, 
branching, blockaging, junctions, or combinations thereof) is such that a t  first sight 
our present analytical knowledge may seem rather limited in contrast. The apparent 
contrast becomes still more stark when one also brings into theoretical consider- 
ation the added effects of unsteadiness, three-dimensionality, compressibility, 
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non-Newtonian properties, non-rigid walls, stability, or, sometimes most importantly, 
turbulence. 

On the other hand the fact that separation, which is almost inevitably found at 
moderate or high Reynolds numbers in any of the above flow situations, has only been 
treatable theoretically in the last decade or so, following Stewartson & Williams’ (1969) 
explanation of external supersonic flow separation, perhaps accounts largely for this 
discrepancy in analytical understanding. Certainly, since 1969 a good deal of analytical 
progress has been possible in studies of both internal and external flows at high 
Reynolds numbers. The main idea stemming from Stewartson & Williams’ (1969) work 
(see also Messiter 1970) is that separation usually occurs by means of a free interaction, 
a local, fairly abrupt, viscous-inviscid process. This idea has proved extremely fruitful 
in studies of supersonic and subsonic external motions (see the reviews by Stewartson 
1974 and Messiter 1979) and, of more concern to the present paper, in studies of 
internal, channel or pipe flows also (Smith 1976a-q 1977a, 1 9 7 9 ~ ) .  A characteristic 
property predicted in the latter studies, for symmetric flow situations a t  least, is the 
occurrence of separation both far upstream and near a point of maximum constriction 
a t  high Reynolds numbers, if the internal flow suffers a substantial disturbance; some, 
but by no means all, of the evidence from numerical solutions of the Navier-Stokes 
equations and from experimental measurements is in line with that prediction. 
A review of the internal flow studies is given by Smith ( 1 9 7 9 ~ )  and so for our present 
interest, in non-symmetric channel flows a t  high Reynolds numbers, we need describe 
only the basics of Smith’s ( 1 9 7 7 ~ )  work on such channel flows. 

The conclusion of Smith ( 1 9 7 7 ~ )  is that, far ahead, of any severe non-symmetric 
disturbance to  an oncoming plane Poiseuille flow, a t  high Reynolds numbers, a non- 
linear free interaction must take place on a large length scale of order a*Re+, where 
Re( % 1) is the Reynolds number (see 5 2 below) based on the undisturbed channel 
width (I*. Here ‘severe’ means ‘of characteristic dimensions comparable with a*’ if 
the disturbance is a distortion of the wall, or ‘finite’ in general. One minor reservation 
needs to be made to the above conclusion, incidentally: if the severe non-symmetric 
disturbance is such that the original plane Poiseuille flow itself forms an acceptable 
first inviscid approximation, a t  O(a*) distances from the disturbance, then the 
nonlinear free interaction upstream is unlikely to occur. An example of such a disturb- 
ance is a severe dilatation of the channel, where the Poiseuille flow can sweep almost 
unaltered past the dilatation and leave only a relatively slow-moving eddy of recircu- 
lating fluid adjoining the dilatation. For a severe non-symmetric constriction, however, 
where the Poiseuille flow is clearly not an acceptable first approximation, the upstream 
free interaction and the flow separation associated with it have the effect of adjusting 
the oncoming flow nonlinearly before the actual constriction is reached. The local flow 
near the constriction then has to merge upstream with the algebraic terminal form 
(given in $ $  5, 6 of Smith 1977a) of the free interaction, rather than with the initial, 
exponential, form of deviation ( $ 3  of Smith 1 9 7 7 ~ )  from the Poiseuille flow a t  the 
start of the free interaction. Further, the free interaction leads to the prediction 

0 . 4 9 ~ * [ 2 ( 3 O q ) 3 R e ] ~ - I ) a * ,  (1.1) 

for the distance between the constriction and the upstream separation point, where 
q is an O( 1) constant depending on the oncoming velocity profile [see after (2.3) below; 
q = & for Poiseuille flow] and the O( 1) constant I) is to be determined. Comparisons 
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between the leading term in (1.1) and numerical solutions of the Navier-Stokes 
equations for increasingly high Reynolds numbers have already shown encouraging 
agreement (Smith 1977 a) ,  as have similar comparisons for symmetrically constricted 
pipe and channel flows (Smith 1 9 7 9 ~ ;  Dennis & Smith 1980). 

Our aim in this paper is to provide a complete theoretical account of the high- 
Reynolds-number motion through a severe non-symmetric constriction and in par- 
ticular to determine the value of D in (1. I), for a given constriction shape, and the 
positions of thereattachment(s) and separation(s) which must take place subsequently. 
The work is restricted to  steady laminar plane flow of an incompressible Newtonian 
fluid and is based on free streamline theory, of the Kirchhoff (1869) kind, in order to be 
consistent with, first, the viscous separations occurring (for a smooth bounded con- 
striction) both upstream of and on the constriction and, secondly, the presence of only 
slowly moving eddies between any free streamline and the wall from which that free 
streamline detaches a t  separation. Here the upstream separation is that associated 
with the free interaction leading to ( 1 . 1 ) ,  while the separation on the constriction is 
described by the Sychev (1972)-Smith (1977 b )  triple-deck. Also the postulate of slowly 
moving eddies is almost certainly consistent with the flow properties a t  the reattach- 
ments involved. For (as in Smith 1979a) the first reattachment, an inviscid process 
near the constriction surface, provokes only small reversed velocities; and the second 
reattachment takes place a t  such a large distance (O(a*Re)) downstream that viscous 
forces are able to prevent any significant backflow being promoted. Both reattachments 
are somewhat different from those occurring in the corresponding, bluff body, external 
flow situation (Smith 1979b), therefore. 

The free streamline flow features are summarized in $ 2 below; some of the properties 
of symmetrically constricted flows (Smith 1 9 7 9 ~ )  carry over to  our non-symmetric 
case, allowing some curtailment of the discussion of 3 2, but one vital difference is the 
algebraic decay upstream, referred to previously. Many other significant differences 
then arise when solutions for the free streamline flow are sought ( $ 3 3 4 ) .  First $ 3  
investigates a rather bizarre-looking class, of slowly varying severe constrictions of 
streamwise length scale O(a2) and transverse height scale O ( a k 2 )  where I & 1. However, 
the long-scale theory for this slowly varying class provides the key to the flow proper- 
ties for the probably more realistic classes of slender constrictions (those of length 
& a* but height of O(a*))  and moderately severe constrictions (those of length O(a*) 
but height ha* 4 a*) considered next in § 4. I n  particular, the moderately severe class 
induces perturbations (of relative orders h and h2) to  the oncoming flow that are much 
greater than those (of relative order h2 only) induced in the corresponding symmetri- 
cally constricted motions (Smith 1 9 7 9 ~ )  and the flow structure then is a much more 
subtle affair, involving the length h-*a* on which the constriction appears as a normal 
flat plate and the pressure variation across the channel still exerts a significant effect 
($4.2). The long-scale theory applies also to the two other classical flows studied in 
$55,  6, concerning curved and cornered channels respectively. The theory of $92-6 
deals with a general oncoming flow whose main, streamwise, velocity profile satisfies 
the no slip constraint a t  the channel walls; plane Poiseuille flow is one special case. 
Further comments are made in Q 7. 
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2. General features of severely distorted channel flows 
Letting a*, U z ,  v*, p* denote the undistorted channel width, a typical velocity of 

the oncoming flow, and the kinematic viscosity and density of the (incompressible) 
fluid, respectively, we define the Reynolds number to  be Re = Uza*/v* and use 
the velocities u, u, the corresponding Cartesian co-ordinates x, y (see figure 1) and the 
pressure p ,  non-dimensionalized with respect to U z ,  U z ,  a*, a*, p*UZa in turn. The 
oncoming flow is taken to  be essentially a velocity profile u = U,(y), but 1.1 Q 1, such 
that Uo(0) = Uo( 1) = 0, Uo(y) > 0 for 0 < y < 1 and, for convenience, Uo(y) is symmetric 
about y = 4 with UA(0) = 1. For an oncoming Poiseuillean flow, for example, 

To be definite in this section, we consider the fluid motion when only one of the 
channel walls (that originally a t  y = 0, say) is severely indented, giving a shape y = F(x) 
for the lower wall but y = 1 for the upper wall, with F( f 00) = 0, 0 < F(x) < 1, and 
F(x)isgenerallyof O( 1).The modifications to  the theory for other forms of constriction, 
or for cornered or curved channels, are readily made (see $ 5  3-6 below). 

When Re $ 1 the flow field through the severely distorted channel is similar in some 
respects to the symmetric case of Smith ( 1 9 7 9 ~ )  and is described by the expansions 

&(y) = (y - y2), u = 0. 

(u ,v ,p)  = ( U ,  V,P)+O(Re-iLe) (2.1) 

for x, y of O( 1). Here U ,  V ,  P satisfy the nonlinear inviscid equations of motion 

(2 .2a )  i ux+v, = 0, 

UU,+ VU, = - P,, 

uv,+vv, = -P,. 

These can be manipulated into the vorticity equation V2$ = c($), where $(x, y)  is the 
stream function ( U  = $y, V = - $%, $( - o 0 , O )  = 0)  and the unknown function 5 may 
be determined from the oncoming flow properties, via (2.5) below; but ( 2 . 2 ~ )  will 
suffice for most of our purposes. The boundary conditions to  be imposed on ( 2 . 2 ~ )  are 
those appropriate to free streamline theory, analogous to the Kirchhoff (1869) kind 
with smooth separation from the indentation if the indentation shape F(x) is smooth 
(cf. $3.3 below), as in Smith (1979~) .  Thus on solid surfaces no adverse pressure 
gradients are tolerable, while on free streamlines the pressure must be uniform: 

P = constant, $ = 0 on CoC, and C2C3; (2 .2b)  

P,<O, $=$( -co , l )  on y = l .  (2 .2d )  

Here the positions x = x,, x = x2 of C,, C2 (see figure 1) are unknown in advance. The 
conditions (2.2c,  d )  ensure consistent, attached, boundary-layer motions between the 
inviscid flow field of (2 .2  a )  and the solid surfaces - it seems reasonable to look for a 
solution without separation along the upper wall, although if solutions of ( 2 . 2 ~ )  are 
not forthcoming then the question of separation there would need to be reconsidered - 
while (2.2 b )  is necessary for the eddying motions between the free streamlines (CoC,, 
C,C3) and the lower wall to remain relatively slow (with U = V = 0, P = constant 
therein). Further, the smooth separation constraint above, a t  the position x = x2 of 
figure 1, is required to  ensure consistency between the inviscid breakaway of the free 

P, < 0, $ = 0 on C2C3; (2 .2c)  
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FIGURE 1. Schematic diagram of the severely constricted, 
non-symmetric, flow structure. 

streamline from the solid surface and the viscous process of incompressible separation 
locally near x = x 2 .  The viscous process here has a triple-deck character (Smith 1979b) 
and demands that, as well as P being continuous, 

P, = 0 a t  x = x2, (2.2e) 

whereas the O(Re-A) correction in (2.1) has to  exhibit a particular (inverse square root) 
form of singularity in pressure gradient a t  x = x2. I n  general separation is expected to  
occur both upstream of, and on, the indentation, in order to avoid the adverse pressure 
gradients [accompanied by, e.g., the Goldstein (1948) singularity] that an attached- 
flow theory would otherwise predict unstreamt, and towards the rear, of the inden- 
tation. I n  fact the upstream separation is governed by a free interaction and takes 
place asymptotically (and surprisingly) far ahead of the indentation, a t  a position 
x = x,,, given by 

from Smith’s (1977a) work, where 0 (the origin shift) is an unknown constant 

dependent upon the solution of (2.2u-e), and Q = for Poiseuille flow) 

is a given O( 1 )  parameter. This last work also yields the starting form for the unknown 
shape y = Fl(x) of the free streamline upstream (figure l) ,  implying that 

x , , ~  = -0*49(2[30~]3Re)++D, (2.3) 

Ug(y) dy ( = 1: 
Fl(x) N 1 2 ~ / ( 2 - 0 ) ~  for x +- .of- (2.4) 

[see Smith 1977a equation (6.3g)l. 

Thus, writing &(y) = Uo(y) and 
One may verify that (2.4) is consistent with the solution of (2.2a-e) for x + - m. 

I @ = @o(Y)+(x-o)-2@‘1(y)+... ,  
P = (x - 0 ) - 4  P1(y) + . . . 

for x + - m yields from (2.2a) and (2.2b) 

( 2 . 5 ~ )  

(2.56) 
J O  

t Clearly, at this stage we need to make the restriction that F ( z )  < 1 2 q r a  as x + - co; other- 
wise the indentation decays slowly enough upstream that the upstream separation of (2.4) is 
suppressed and attached-flow upstream is possible (cf. Smith 1979a, 8 6). 
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( A ,  an unknown constant), following which Bernouilli’s theorem applied along y = 1 
yields 

A ,  = 0 or A ,  = 12q. ( 2 . 5 ~ )  

The former result for A ,  applies to non-distorted or symmetrically-distorted channel 
flows (only), while the latter reproduces (2.4)’ on imposing 1Ic = 0 a t  y = F,(x) with 
(2.5a,b).  Our view is that the starting forms (2.3)’ (2.4)’ (2.5a-c), which are non-linear 
upstream eigensolutions in a sense, will arise for almost all non-symmetrically, severely, 
distorted channel flows. The results in $ 5  3-6 below certainly add credence to such a 
view. 

Despite the presence of the separating streamline far upstream, in (2.4)’ however, the 
upstream constraints. 

are still appropriate for 0 < y < 1 .  Downstream, as in Smith (1979a), a boundedness 
condition is all that  is necessary, and i t  leads to a separated jet-like flow persisting as 
x -+ 00; the ultimate reattachment of the last flow occurs on an x scale of O(Re) down- 
stream. At the first reattachment point x = x, the only smoothness conditions to be 
imposed are the obvious ones that P should be continuous and, by definition, 
F,(x, - ) = F(x,). A discontinuity in P, or P,, a t  C, is certainly permissible according 
to the present, somewhat limited, knowledge of reattachment processes. 

The problem posed, (2.2a-e) with (2.6)’ sets a very difficult numerical task ingeneral. 
Also, although the theory so far is quite similar in spirit to  the symmetrical flow theory 
(Smith 1979a), significant differences are already apparent in the algebraic decay 
upstream in (2.4), ( 2 . 5 ~ - c )  and in the large upstream separation distance predicted in 
(2.3). Further distinctions arise when we move on to consider certain limit solutions 
of (2.2e), (2.6), namely slowly varying, slender and moderately severe constrictions, 
in $93, 4 below. 

3. Slowly-varying severe distortions 
For an indentation whose typical length scale 1 is large, 1 & 1 (but, strictly, 1 < ReN 

for all N > 0 so that the Reynolds-number expansions of (2.1) remain undisturbed), 
it is found that some of the most important flow responses take place in thin wall 
layers of thickness 0(1k2), So we will study for the most part the properties of ( 2 . 2 ~ ~ - e ) ,  
(2.6) for a particular class of slowly-varying indentations given by 

y * k2f (X) where x = 1X. (3.1) 

The flow features for many other classes of indentations, and for curved or cornered 
channels, stem directly from the properties resulting for the class (3.1),  as Sf~4-6 show 
subsequently. We shall treat the general case of a smooth indentation (3.1) (with 
f (k 00) = 0) in 3 3.1 below, and then $53.2 and 3.3 deal with specific examples of 
smooth and non-smooth indentations. 

3.1.  The long-scale theory 

For (3.1) the solution of (2.2~1-e) with (2.6) subdivides into three basic zones, 1-111 
when X is O(1). Zone I is the core (0 < y < 1) of the motion, while 11, I11 are wall 
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FIGURE 2. The flow structure for the slowly-varying severe constriction. 

layers of thickness 0(k2) astride y = 0 , l  respectively (see figure 2 ) .  In  zone I the 
expansions for $, P are 

( 3 . 2 ~ )  I $ = @o(Y) + ~-”,(S, Y )  + 0P3L 
P = z-4p1(x, y )  + o(2--51, 

and so ( 2 . 2 ~ ~ )  yields the solutions 

$1 = Uo(y), p, = PAx)+Afw/; U;(y)dy, ( 3 . 2 b )  

where Pl(X) is the unknown wall pressure a t  y = 0 and A ( X )  is an unknown (displace- 
ment) function. Hence in zone 11, to leading order, 

$ = t -4$ (S ,  F), P = 1-4Pl(X) ( 3 . 3 a )  
- -  

with y = t-,Y, I’ = O ( l ) ,  and from ( 2 . 2 a )  3, PI satisfy 
_ -  _ -  
$F $xF - $x $FF = - p;(Aw. ( 3 . 3 b )  

The boundary conditions on ( 3 . 3 b )  are 

( 3 . 3 c )  

to match ( 3 . 3 a )  with ( 3 . 2 a ,  b )  and to satisfy ( 2 . 2 b ) ,  in turn. Here z’ = f e ( X )  denotes the 
effective indentation shape, ie . ,  the unknown free streamline shape for - 00 < X < XI, 
f(X) for X, < S < X, and, finally, the unknown free streamline shape holding for 
X > X,. Similarly, in zone 111, where y = 1 -t- ,  with 7 of O ( l ) ,  

$ = $(-a, 1 ) + 1 - 4 & s ,  F), P = z-~P,(x) ( 3 . 4 a )  

to  leading orders. Therefore 3, P, are controlled by the inviscid boundary-layer 
equations, as in ( 3 . 3 b ) ,  but 

( 3 . 4 b )  

I n  (3 .4  b )  we have introduced (for future convenience) the possibility of a distortion 
of the upper wall also being present, of the form y = 1 +Z-2g(X), and the subscript 
e stands again for ‘effective’, to account for the unknown free streamline shapes 
upstream and downstream (figure 2 ) .  Also, from ( 3 . 2 6 )  we have the relation 

P,(X) = P,(X) + g A ” ( X )  (3.5) 

between the wall pressures and displacement. 
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The solution of (3.3 b, c) for layer I1 is T = +( H -fe) (H +fe + 2A), giving 

P1 = - +(f, + A),.  

Similarly, the solution for layer I11 gives P, = - i (ge+A)2.  Hence, with ( 3 4 ,  we are 
left with the simple-looking, ordinary differential equation 

%A’’ = (‘A + f e  + g e )  ( f e  - ge) (3.6) 

for A ( X ) ,  f , ( X ) ,  g,(X). I n  addition, however, ( f e + A )  must be constant on the two 
free streamlines near the lower wall, from (2.2b) and the solution above for Pl, while 
( A  +f) (A’ +f’) > 0 during the attached part of the flow along Y = f e ( X )  = f(X), 
from (2.2c), and the smooth separation conditionof (2.2e) is to be applied for a smooth 
indentation shape (3.1). Analogous constraints hold on (ge + A ) .  

Returning now to the case of an undistorted upper wall, g = 0, suggesting ge = 0 and 
leaving P, = -*A2 throughout, we split the solution of (3.6) for -co < X < co into 
three parts, X < X,,  X ,  < X < X,, X > X,, where X = X , , X ,  correspond to the 
positions z = q , z 2  of $2. First, for X < X,, P, = 0 from (2.2b) and (2.6), so that 
f, = - A  and (3.6) becomes 2qA“ = - A 2 .  This gives 

- 12q - 72q2 
A = -  = -fe, P - - P, = 0, x < x,, 

( X  - d), , - (X-d )4 ’  
( 3 . 7 ~ )  

where d is a constant, to  be found, such that d > X ,  to  avoid an unreaIistic singularity 
in ( 3 . 7 ~ ) .  Note that ( 3 . 7 ~ )  matches with (2.4) upstream and yields the result 

D z Id (3.7b) 

for the variation of D in (2.3), while P;1 < 0 consistent with attached flow along y = 1. 
Second, for X ,  < X < X,, f e ( X )  =f(X) is a given function and so (3.6) yields the 
linear differential equation 

for A ( X ) .  Also P, = - f r ( f+A) ,  has to be monotonically decreasing with X, falling 
from zero a t  X = X ,  to an unknown value - C,(C, > 0) a t  X = X,. Third, for X > X,, 
P ,  = -C, from (2.2), so thatf, = -A 

2qA” = B A f ( X )  +f2(X)  (3.8) 

(2Cl)3 and (3.6) becomes 

2qA” =‘ 2C1 -A’. (3.9) 

There are two solutions of (3.9) bounded a t  infinity, the one of interest to us being 
given by 

(3.10) 

where (?(a) = 2-6sech2((~+D2) /24)  I 
and the constant D, is to be determined. The other solution has 

(? = 2 + 6 cosech, ((a + D,)/24) 

but it is inadmissible since it implies P ; ( X )  ( = - A ( X )  A ’ ( X ) )  > 0 in X > X ,  (it could 
apply if separation took place a t  the upper wall, however). Again, the choice 

f e ( X )  = - A ( X )  + (2C1)’ ( X  > X2) (3.11) 
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is necessary since, with (3.10), the other choice f, = - A  - (2C1)3 would yield f, < 0, 
meaning that the free streamline would intersect the solid surface. Given the monotonic 
increase of 0 with 2 in (3. lo), (3.11) shows that the distance of the free streamline from 
the wall increases monotonically in X > X, and so, from the smoothness requirement 
a t  the separation point X = X,, i t  follows that the separation must occur ahead of the 
point of maximum constriction. Further, the ultimate distance of the free streamline 
from the wall as X + cc is given by 

f,(cc) = 2(2C,)+ (3.12) 
from (3.10), (3.11). 

Let us check now on the numbers of unknowns and conditions. The unknowns 
above are seven in number, comprising X,, X,, d, C,, D, and the two arbitrary constants 
(p, y ,  say) involved in the general solution of (3.8).  The conditions imposed a t  X = X, 
are three: that  A ,  A' and f, be continuous, so that P,, Pi be continuous, and by 
definition, respectively. The governing equations (3.6), (3.8) then ensure continuity 
of Pi. The remaining four conditions are those required a t  the separation point X = X ,  
for a smooth indentation shape (cf. 9 3.3 below): namely, that A and fl be continuous, 
that  P, = -C, (by definition) and that Pi = 0 (from (2.2e)).  The first two conditions 
here ensure (also) that  P,, Pi, f, and A' are all continuous a t  X = X,,  from the 
expressions above for PI, P, and for f, in terms of A. Hence the system is solvable in 
principle. Mathematically the seven constraints just above lead in turn to  the 
following seven equations for X,, X,, d, C,, 0, (=  0 evaluated a t  X = X,), p, y :  

P ~ , ( X , + ) + ~ ~ , ( X , + ) + U ~ ( X , + )  = - 12q(d-X,)-', 

pa;(X, + ) + yui(X, + ) + ai(X, + ) = - 24q(d - X,)-3, 
f (X, + ) = 12q(d - XI)-,; 

(3.13 a )  

(3.13 b )  

(3.13 c )  

( 3 . 1 4 ~ )  

(3.14 b)  

f ~ x 2 - ) + ~ a 1 ( X 2 - ) + ~ a 2 ( X 2 - ) f a 3 ( X ~ - )  = (2cl)3, ( 3 . 1 4 ~ )  

(3.14d) 

I n  (3.13a-c), (3.14a-d) al(X), a2(X) are complementary functions of (3.8) and a,(X) 
is a particular integral, while use of 0, is preferred in place of D, and certain of the 
properties established between ( 3 . 7 ~ )  and (3.1 1 )  have been applied already. 

For a given (smooth) indentation shape f ( X ) ,  then, the remaining task is to solve 
(3.8) for al(X), a,(X), a3(X) and then determine X, ,  X,, d ,  C,, Q,, p, y from (3.13a-c), 
( 3 . 1 4 ~ 4 ) .  That task is tackled next, in § 3.2, for a range of specific shapes. The attached 
flow requirements that P; < 0 for X ,  < X < X ,  and Pi < 0 for all X may be verified 
a posteriori. Also, we note that if the separation point X = X, is prescribed, e.g. a t  a 
slope discontinuity in f ( X ) ,  then only three conditions are to be imposed a t  X = X ,  
andf; (X) is discontinuous there in general (see 5 3.3 below). 

&(x!2 - ) + ya'2(XZ - f - ) = - (c1/2)1 02 

f'(x2 - ) = (CJ2)P (2 - 02) [(Qz + 4)/31*q-&, 

pa;(x, - ) + yaL(X, - ) + u p ,  - ) = -f' (X, - ). 

3.2. Solutions for smooth indentations 

Solutions of (3 .13~-c) ,  (3 .14~-d)  were sought for the indentation shapes 

2 
f = 1 + k2X2 (-a < X < a), (3.15) 
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d k  (03) 7 6 5 4.25 4.00 3.75 3.50 3.25 

- q-ix, (0) 0.185 0.218 0.266 0.318 0.339 0.364 0.393 0.427 
-9-49,  (0) 0.0019 0.0026 0.0037 0.0050 0.0055 0.0062 0.0071 0.0081 

q-id (3.87) 3.828 3.819 3.807 3.798 3.788 3.781 3.774 3.764 

Ql (0.72) 0.701 0.697 0.693 0.691 0.686 0.685 0.682 0.679 

qik 3.00 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 

-&XI 0.468 0.517 0.578 0.655 0.755 0.889 . 1.083 1.385 1.920 
-&Y, 0.0094 0.0110 0.0130 0.0158 0.0193 0.0239 0-0306 0.0408 0.565 
q-fd 3.755 3.741 3.726 3.708 3.680 3.642 3.590 3.513 3.382 

Cl 0.677 0.673 0.670 0.666 0.660 0.651 0.641 0.629 0.613 

d k  0.90 0.80 0.70 0.60 0.55 0.50 0.45 (6-t) 

-q-&X, 2.271 2.782 3.600 5.149 6.629 9.50 18.25 (CO) 

-q-kYz 0.0654 0.0763 0.0900 0.107 0.118 0.129 0.142 (0.1540) 
q-&d 3.302 3.194 3.041 2.805 2.631 2.390 2.015 (1.314) 
c, 0.605 0.596 0.586 0.574 0.568 0.561 0.554 (0.5478) 

TABLE 1. The values of q-&X1, q-&X,, q-fd, C, in the solution of (3-13a-c), 
(3.14a-d) with (3.8), (3.15), for various values of qbk. 

which indentations have height 21-, and length O(k-lZ). The solutions depend only on 
the value of qtk and were obtained numerically for various values of qHk. I n  fact, with 
(3.15) the differential equation (3.8) may be transformed into an associated Legendre 
equation, but solution of the latter equation is not relatively simple for general values 
of k and so instead we chose to solve (3.8) directly, using a Runge-Kutta scheme and 
various steplengths A X  in X. The associated Legendre equation proves useful as a 
check on the numerical work at certain values of k ,  however, as shown below. I n  our 
numerical approach, a first guess was made for X, ,  so that (3.13~) fixed d and (3 .13~)  b)  
then gave the values of A ( X ,  + ), A ’ ( X ,  + ). Hence (3.8) could be integrated forward 
from S = XI+ to the station X = X, determined by (3.14d), with the values of C,, 
G2 then following from (3.14c), ( 3 . 1 4 ~ )  respectively, and the satisfaction of (3.14b) 
could be tested. By iterating with the value of X,, therefore, the complete solution of 
(3.13a-c), (3.14~-d) could be found to satisfactorily high accuracy. The solutions for 
the different values of k studied appeared to be unique and are summarized in figure 
3 (a)-(d) and in table 1. 

The trends of the flow solutions as qdk varies are of interest and considerable 
importance. A decrease in qbk makes the indentation more gradual and as a result the 
upstream reattachment point (S = ATl) is pushed further upstream, and the separation 
point ( X  = X,)  is moved further ahead of the maximum constriction point ( X  = 0). 
Also, d decreases, so that (from (3 .7b ) ,  (2.3)) the upstream separation point (x = zsep) 
is forced further upstream. Increasing qtk  produces a more abrupt indentation, so that 
the upstream flow separation lasts for a shorter distance (S, and x , , ~  both increase, 
since d increases, but xeeP increases faster), while the separation point X = 5, is forced 
towards the maximum constriction point. Indeed, the flow properties (implied by the 
numerical work) for k >> 1 appear to be as follows. When k $. 1, 

x, = k- lX ,  + k-2.q + . . . , x, = k- lX ,  + k--2Z2 -I- . . . ) 
A = A 0 ( X )  + k-lA,(.X) + . . . ; ] (3 .16~)  
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C,, Q2, d remain O( l ) ,  and the critical length scale is X = k-lX. Then (3.8) with (3.15) 
yields A ,  = P O ~ + y , ,  A ,  = PIX+yl. It is soon apparent from ( 3 . 1 3 ~ - c ) ,  ( 3 . 1 4 ~ - d )  
that Po = = 0, leaving (3.13u-c), (3 .14~-d)  in the form (to Ieading order in k- l )  

yo  = - (C1/2)W2, - 4 z 2  = (Cl/2)f ( 2 4 , )  ('2; - '1' q-i] (3.16b) 

in turn. Manipulation of (3.16b) leads to the equation (1 - B ) 3  = (2B-  1)2 (1 + B )  for 
B = (C,/2)4, the solution of which is B = +. Hence from (3.16b) 

C, -+ (@), d -+ (15q)4, X ,  z - (;)*k-l, 

7, = - 12q/d2, p1 = - 24q/d3, 2/(1 +X;) = 12q/d2, 

(2c1)i = yo + 2, P1 = 4z2, 

(3.17) 

are the asymptotic trends of the solution for k -+ 00. Comparisons between (3.17) and 
the numerical solutions for increasing k tend to be supportive of (3.17), as figure 3 
shows. The behaviours in (3.17) are particularly important when shorter scale (i.e., 
moderately severe) indentations are considered in 3 4 below. 

The other extreme limit of the solutions occurs when q4k -+ 6-4 + , since for 
qbk c 6-4 the upstream decay of the indentation of (3.15) is slower than that of the free 
streamline shape in (3.7u), implying attached flow far upstream at least. In fact, when 
q4lc < 6-4 the upstream separation is totally suppressed on the X scale and separation 
first occurs only a t  X = X,. The crossover from separated to attached flow upstream 
takes place because the upstream reattachment point X = X ,  is forced asymptotically 
far upstream as k - t  (6q)-4 + . Setting q4k = 6-4 + e, with 0 c e 4 1, we have d, C,, X,, 
d, remaining O( 1 )  but X, is large and negative, in the form X ,  = q+(e-lX, + g1 + . . .).To 
leading order, therefore, the range of interest for (3.8) with (3.15) is -co c X c X , .  
For X of O( l ) ,  also A = A ,  + eA, + . . . and (3.8), (3.15) yield the governing equation 

( 3 . 1 8 ~ )  

We define the complementary functions a,, a2 such that a, z X-3,  a, M X4for X + - co, 
whereas a3 NN - 12X-,. The satisfaction of ( 3 . 1 3 ~ - c )  is achievable only if y = 0 (to 
leading order). Also, it can be shown that lAll < X-,  as X -+ - co. Hence (3.13a-c) are 
found to be seIf-consistent and yield, on expanding in powers of e, the results 

q4p = - 24d, d = - 6tX1 for e -+ 0 + . (3.18 b )  

Next, (3.14u-d) are unaltered when e -+ 0 +  except that to leading order we may set 
y = 0,  leaving four equations for P, C,, 8,, X,, given the solution of ( 3 . 1 8 ~ ) .  The solution 
of (3.18 a )  must satisfy 

A ,  z - 12X-2+pX-3+ ... for X -+ -00, ( 3 . 1 8 ~ )  

from above, and is given by A,, = ,8a, + a3, where 

(3.18d) 

24-2 

I -?&,(X) = (6 + X 2 )  (6 + 5 P )  (6'+ &~) / (24 )4  + 1 3 X + # F ,  

8u3(X) = -%%,(X).(5X-64.46')-(6+X2) ( 5 X 2 + 6 )  

x [5X(O + 47~) (24)-* + $ - (6' + in), + (6 + X2)- l ]  
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and - 9, < 8 = tan-l(6-4x) c 4,. These expressions for a,, a3 may now be substi- 
tuted into the four constraints 

stemming from ( 3 . 1 4 ~ 4 ) ~  to leave algebraic equations determining p, C,, Q, and 
1, ( = q-iX,). The solution of (3.18 e )  with (3.18 d )  was found numerically and gives 

/? = -31.58, C, = 0.5478, G, = 1.805, x, = -0.1540p.4. ( 3 . 1 9 ~ )  

Hence from (3.18 b)  we have also 

d + 1.314q4, X ,  z - 0*536q*/(qgk - 6-4) (3.19b) 

when q4k -+ 6-4 + , which completes the analytical description of how the (first) 
reattachment point is pushed indefinitely far upstream on the present (O(1)) scale. 
Clearly, if E were decreased to order 1 Re-) then that reattachment point would enter 
the Ref region of the upstream free interaction of Smith (1977a) leading to (2.3). 
Further slight decreases of E ,  and the eventual disappearance of the upstream separ- 
ation and reattachment, would then be governed mainly by the Re+ region, although 
when E becomes negative and much greater than O(lRe-+) one would expect the 
attached flow to be controlled by (3.18d, e )  again. Moreover, the effects of decreasing k 
(and hence E )  still further, by an O( 1) amount, can still be accounted for by the work of 
0 3.1 provided the existence of attached flow upstream is recognized then. Such details, 
however, and the way in which a match is achievable between the present structure 
and that of Smith (1976a, b )  in the limit as k + 0 (where the constriction becomes very 
slowly varying), need not be pursued in the present work. Comparisons (figure 3) 
between the asymptotes (3.19 a, b )  and the numerical solutions as q4k -+ 6-4 + show 
a fair measure of agreement. 

Finally in this sub-section a check on the numerical solutions may be provided for 
the value q3E = 1. Then the solution of (3.8) with (3.15) is 

A(X) = psec28 + y(Osec28 + tan S )  + &(82sec28+ 28 tan 8 + 1) (X = qt tan 8)  

(3.20) 

where - 4, < 8, < 8 < 8, < 0, X ,  = q )  tan 8,, X ,  = q )  tan8,. Substitution of (3.20) 
into the constraints (3.13a-c), (3.14a-d) and some manipulation leaves the three 
equations 

(3.21) I - 64 sine, E3 = (2 - E2) (E2 + l)$, 

- 8, + (2 - E-,) sin (28,) = - 8, + sin 28, - (%)& cos 8,[ G y ] ,  

2(E-, - 1 )  C O S ~  8, - &(Si + 8, sin 28, + cos2 8,) - (8, + Q sin 28,) y 

= - 2 C O S ~  8, - +(8: + 8, sin 28, + cos2 8,) - (8, + Q sin 28,) y ,  

for E(  E (2/C,)f cos O,), 02, 8,. The solution of (3.21) gives 

tan& = -0.0565, tan8, = - 1.92, C, = 0.613 

to the number of significant figures shown. This agrees favourably with the numerical 
solution shown in table 1 for q3k = 1. 
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3.3. Solutions for non-smooth indentations 

The particular non-smooth indentation shapes to be studied here are given by 

X ( 0  < x < X , ) ,  X , ( X ,  < x < X , ) ,  X , + X , - X ( X ,  < x < X , + X , ) ;  
0 otherwise. (3 .22)  

As well as illustrating the application of the slowly varying theory to non-smooth 
indentations, the ramp-step (3 .22)  also bears strong resemblance to an experimental 
set-up for a non-symmetrically constricted channel flow currently under investigation 
at Cambridge University (T. J. Pedley, private communication 1979). With (3 .22 ) ,  the 

A = P A i ( g ) + y B i ( g ) - + Z  (3 .23)  solution of (3 .8)  

where Ai, Bi are the solutions of Airy’s equation, A = q ) A  and X = q*z. The 
conditions a t  X = X,(O < X ,  < X , )  are as in (3.13a-c),  but a t  the separation point, 
which we assume immediately to  be a t  the convex corner X = X ,  = X , ,  only the 
three conditions, that  A ,  A’ be continuous and P, = -GI (by definition), are relevant. 
These three are required for continuity of f e ,  P,, PL, and P,; f :  is discontinuous in general 
(due to the corner, prescribing the position X = X , ) .  Applying the six conditions 
and manipulating we obtain two equations, with W = (Ai  Bi’ - Ai’ Bi) ( g ) ,  

f ( X )  = { 

3-42? Bi(2,) - +s Bi‘(2,) - + Bi(2,) 

Bi(8 , )  [ - A i ( 2 , )  (3-*XF - 4) + 48, Ai‘(&)] 

= - &2,Bi‘(rZ,) - i B i ( 2 , )  + ZEBi’(2,) + B i ( 2 , )  (4E-2,) g(2E+ 2,)]4 
(3 .24a)  

= (2R- $2,) W -  Ai(2,) [3 -42!  - +glBi’(gl)/Bi(gl) - $1 Bi(d , ) ,  
(3 .243)  

for s,( = q-fX,) and E( = q-f((:C,) 4) for a given value of 8,( = q-fX, ) .  The numerical 
solution of ( 3 . 2 4 a , b )  for ifl, q-%’, (and hence q-*d, G2 from (3.13a-c) and above) is 
presented in figure 4 for various values of q-iX,.  The increase of X ,  and the decrease of 
d with increasing X ,  (i.e. increasing height of step) seem sensible physically as they 
represent an enhancement of the upstream influence. We would emphasize here too 
the typical property of free streamline theory, that the indentation shape beyond 
X = X ,  exerts no influence a t  all on the flow features to leading order provided the 
shape there does not protrude through the downstream free streamline. 

For a relatively small ramp-step, where X ,  < 1, (3 .24a ,  b )  may be solved analytically. 
Then X ,  and E both become O ( X , )  and after working through (3 .24a ,  b )  to orders X i  
we find that 

X I  z bX,, z &X3, C, z A X E ,  G2+-+, d z (3Oq/X,)* for X,+O. 
(3 .25)  

Thus when X ,  is small the upstream free streamline intersects the ramp step at EX,, 
while the downstream free streamline emanates from the corner a t  X = X ,  with a very 
small slope, of $(&X3)*, from (3 .25 ) ,  on the X - P scalings, and ultimately tends to a 
distance of g X ,  from the undisturbed wall, from (3 .25)  with (3 .12 ) .  Comparisons 
between (3 .25)  and the calculations are presented in figure 4. For a relatively large 
ramp-step, X ,  1, the solution is again obtainable analytically. We find that XI, d ,  P 
remain O( I), y -+ 0 and 2, satisfies 

(+)42! -2,Ai’(zl)/Ai(x1) = 1, (3 .26)  

which gives X, = 0.5432qf. Hence d + 5.236qf for X ,  -+ 03, and E z  $3,. 
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FIauRE 4. The dependence of X,, d,  5 on X, in the ramp-step case. The dashes 
indicate the esymptotes stemming from (3.25), (3.26). 

In  $ 4  below we discuss the implications of the long scale theory and solutions of 
$5  3.1-3.3 for slender, and for moderately severe, distortions of the channel. The 
implications for curved or cornered channel flows are then followed through in $0 5 , 6 .  

4. Implications for dender or moderately severe constrictions 
For slender, and for moderately severe, non-symmetric constrictions of the channel 

flow the solutions of the nonlinear problem posed in $ 2 have strong connections with 
the slowly varying theory of $3.  We consider first (in 9 4.1) the slender case, since that 
is easier to deal with, and then consider the moderately severe case in $ 4.2. Also, we 
take the upper wall to be undistorted again, to avoid undue complications, and further 
suppose the lower wall distortion to be reasonably smooth. 

4.1. Slender constrictions 

‘Slender ’ here refers to a non-symmetric constriction whose typical streamwise 
length L is large (1 6 L 6 ReN as in $ 3) but whose typical height is of O( 1) .  Hence the 
lower wall is described by y = E @ ) ,  say, where x = L-$ and P is of O(1) or less 
(0  < i@ < l), whereas the upper wall remains straight (at y = 1) .  For convenience we 
suppose that the constriction is wedge-like a t  its beginning (at d = 0, say), so that 
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- OW) - 
FIGURE 5 .  The overall structure of the motion through a slender constriction. 

P(d) z ad for d + 0 +, E(d) = 0 for d < 0, with bz of O(1). Other forms for the 
beginning of the constriction are readily analysable, as are constrictions incorporating 
some distortion of the upper wall, in principle. 

Near d = 0, therefore, the constriction takes the wedge shape y = &x/L(x > O ) ,  
O(x < 0). The theory of $ 3 . 1  above then suggests that the lengthscale x = O(Lf) must 
be considered, to explain the way in which the fluid flow anticipates (in x < 0) the 
presence of theconstriction in x > 0. On that O(L+) scale, identifying &AL* with 1 we 
see that the three-tiered structure of § 3.1 is set up (figure 5), leaving the governing 
equation (3.8) (with f ( X )  = X now) for the attached part of the flow, X > X,: we 
expect separation upstream, in the form ( 3 . 7 ~ ) ,  of course, but beyond the reattachment 
a t  X = X ,  the flow is expected to remain attached throughout the X = O(1) scale. 
With f = X ,  and requiring boundedness as X -+ co, we obtain the solution 

A ( X )  = p A i ( X g 4 )  - &X (4.1) 

of (3.8) for X > X,. The three conditions a t  X = X ,  are given by (3 .13a -c ) ,  with 
y = 0 ,  a l ( X )  = Ai(Xq-+),  a , (X)  = -QX, and they yield the values of X,,  d ,  p. I n  
particular, X,q-+ satisfies (3.26) as might be expected, so that from just below (3.26) 
the results 

determine the upstream reattachment and separation positions (by use of (2.3)).  Far 
downstream on this scale, as X -+ CO, A N - QX from (4.1) and a match is achieved 
then with the simpler theory of Smith ( 1 9 7 6 ~ )  in the sense that the core displacement 
( -A)  becomes equal to the average displacement of the walls. 

Further downstream (figure 5), on the O(L) scale in x ,  the solution of ( 2 . 2 ~ - e )  
becomes single-structured and is simplified by the fact that, in effect, a/ax < a / a y .  
Hence to leading order U ,  V ,  P satisfy the inviscid boundary-layer equations, with 
P = P ( X )  now independent of y (cf. 0 3), which give on integration the equation (cf. 
Pretsch 1944; Cole & Aroesty 1968) 

X ,  z 0*5432(Lq/&)*, D z 5*236(Lq/&)+, (4.2) 

(4.3) 

for the determination of P ( d ) ,  given Pe(d) = p ( 8 )  for attached flow or, on free 
streamlines, for Re@) given P ( d )  = constant. The match with (4.1) near d = 0 + may 
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be verified readily from (4.3). Further, since P ( 8 )  is constant beyond the separation 
point x = x2, or 8 = 22, the integral (4.3) shows that E(2) must also be constant 
there. Then smoothness requirements at the separation point imply the results 

8, = Tmax, E , ( 2 )  = P(8ma,) for 8 > ZmSx (4.4) 

separation occurring at the point 8 = = xmax) of maximum constriction (as in 
Smith 1 9 7 9 ~ ) .  We note in passing that an alternative form of the solution involves 
solving @vy = 6($) for @ and leads to the same conclusion (4.4). 

4.2. Moderately severe constrictions 

‘Moderately severe ’ here describes a constriction of O( 1) typical streamwise length but 
whose typical height h is small (strictly 1 3 h 3 Re-N, as in 3 3). For symmetrically 
constricted flows the moderately severe case can be treated by a linearization, about 
the oncoming flow (2.6), involving perturbations of order h2 in the core (Smith 1979a, 
3 3).  For our non-symmetrically constricted channel flow, however, before an analogous 
treatment is attempted some prior thoughts are necessary in view of the limiting 
properties of the solutions of 3 3.2 when k --f co there. One would expect those limiting 
properties, which correspond to a shortening of the indentation’s characteristic length 
scale from O(Z) to O(Zk-1) but,with the maximum height remaining 2ZP2, to give us a 
guide to  the flow properties for a moderately severe non-symmetric constriction and 
so it proves. Thus, formally identifying the height h with 1-2 and letting k -+ O(l) ,  
SO that  the slowly varying severe indentation of 9 3.2 tends towards a moderately 
severe kind, we conclude from (3.16a)-(3.17) that  even during a moderately severe 
constriction the three-tiered structure of $3 3.1-3.2 is still set up on the long scale 
x = O(h-3), upstream and downstream of the indentation, while (in contrast and as 
might be expected ab initio) the details of reattachment and separation from the 
indentation occur on the shorter length scale (0( 1 ) )  of the indentation itself. Moreover, 
the perturbations of the core flow are now O(h)  + O(h8) [from ( 3 . 2 ~ )  with I -+ O(h-8) and 
from ( 3 . 1 6 ~ )  with k -+ O(h-t)], much larger than the perturbations occurring in 
symmetrically constricted flows (Smith 1 9 7 9 ~ ) )  and the displacement D in (2.3)-(2.5) 
becomes O(h-8) from (3.7b) with I -+ O(h-3). 

The flow structure resulting for moderately severe constriction is shown schemati- 
cally in figure 6. I n  regions 1-111, however, the solutions are essentialiy those of 
$ 3  3.1-3.2 upstream of reattachment and so, effectively, are merely the continuation 
of (2.4). Thus, with x = h-43 and 3 of O( 1) and negative, 

Fl = 12~/ (h-4(3-2) )~ ,  ( 4 . 5 ~ )  

P(Z, y) = - 72p(hd(Z - d))-410v U,Z(y) dy,  

D = h-@, 

(4.5b) 

(4.5c) 

to  leading order. Hence the match upstream with (2.4) is achieved. 

solution of ( 2 . 2 ~ )  in region IV (0 < y < 1) takes the form 
Then, closer to the indentation, where regions IV-VI are set up with x of O ( l ) ,  the 

9 = $,(Y) + h$&, Y) + ~ + $ Z @ ,  y) f O(h2),  

P = hzPl(x, y) + h P 2 ( x ,  y) + o(h3). 

( 4 . 6 ~ )  

(4.6b) 
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FIGURE 6. Schematic diagram of the flow structure produced by a 
moderately severe constriction. 

Here, from (2.2u), or the vorticity equation just below ( 2 . 2 ~ ) )  $,, $, satisfy the linear 
equations of motion 

and, from ( 2 . 2 b d )  and Taylor series expansion, 

v2$1 = $lC(@OL v2$2 = $2"(@0) 

= $, = o on y = 0 , 1 .  

(4.7u) 

(4.7b) 

Further, the match with (4.5u, b )  requires 

$1 + -A,@A(Y), $2 -A,X@h(Y) as x +  -a, (4.7 c) 

where A, = 12q/d2; A, = 24q/d3. (4.7d, e) 

We notice that the match with ( 2 . 5 ~ - c )  upstream is achieved not by (4 .7~-e)  but  by 
the longer scale adjustment described by (4 .5~-c )  further upstream. Downstream, as 
x -+ co, no exponential growth is to be allowed. The unique solutions of ( 4 . 7 ~ - c )  are 
simply 

where the constant B, is unknown. Strictly, the solutions in the wall regions V, VI  
should perhaps be expanded separately from the core expansion (of ( 4 . 6 ~ ) )  next, as was 
done in $ 3.1, but the solutions in V, VI are really the continuations of (4.6a, b), re- 
written in terms of local co-ordinates Yl = h-ly and Y, = ( 1  - y) h-' respectively. 
Therefore V, VI  yield the results (similarly to 9 3.1) 

$1 = -A,@;(YL $2 = -(-J,x+82)@A(Y)9 (4.8) 

P,(X) 0) = - +,(f,(x) -A,),, P1(q 1)  = - 4-42, (4.91 

where y = hf,(x) is the effective indentation shape (comprising the upstream free 
streamline, the actual indentation and the downstream free streamline in order, as in 
$ 3 . 1 ) )  so that F,(x) z hf,(x) for x < x , ,  and the actual indentation is given by 

Y = hf(x). (4.10) 

From the constant pressure requirement (2.2b) in x < x l ,  (4.9) yields the result 

f,(x) = A, for all x < x,, (4.1 1 )  

which matches upstream with ( 4 . 5 ~ )  (as if -+ 0 - ). Continuity of f,(x) a t  x = x1 then 

(4.12) 
imposes 

A1 = f (21 ) .  

Similarly, the constant pressure requirement (2.2b) in x > x2 shows that f,(x) is 
constant beyond separation, from (4.9)) which with the smooth separation condition 
(2.2e) implies that  to leading order 

2 2  = x m a x ,  f e ( x )  = f m a x  for 2 > Xmax. (4.13) 
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The separation a t  maximum constriction (f (xmax) = fmax), followed by the straight 
separation line, in (4.13), are reminiscent of the symmetric flow properties of Smith 
(1979a). Also, the constant pressure pl(x, 0 )  = - Cl beyond separation is related to the 
unknown constant 2, by the equation 

( f m a x - 2 1 )  = (2C1)', (4.14) 

from (4.9). However, we do not have enough conditions yet to  fix the unknown values 
of C,, A,, d and xl. Only three relations, ( 4 . 7 4 ,  (4.12), (4.14),  can be established 
between the above four unknowns on this O( 1)  length scale. 

Remarkably enough, to determine the remaining unknowns, including even the 
reattachment position x = x,, the longer scale flow (see figure 5 )  beyond the constric- 
tion, where x = h-tz but with 2 positive and O( i ) ,  must be accounted for again. There 
a three-tiered structure (VII-IX) analogous to that of $ 3 . 1  is promoted. Indeed, 
replacing 1 in § 3.1 by h-8 and X by 5, we may go straight through from ( 3 . 2 ~ )  to the 
equation (3.6) for the negative displacement A and thence to (3.9) (and its solution 
(3.10)) and (3.11), sincenow i n 5  > 0 the flow is separatedin the form (3.11). Matching 
the core solutions for 31' and their x derivatives [the governing equations (2.2a) then 
guarantee matching of lower order x derivatives of 31'1, from the O(1) scale (given by 
(4.8)) to the O(h-8) scale downstream (given by (3 .2a,b) ,  as just described), then 
requires A(5) + - A,, d A / &  -+ A, as E -+ O +  , or from (3.10) 

( 4 . 1 5 ~ )  

A, = (+Cl)g(2-d2) [+(Q+4)]*q-h. (4.15b) 

Now (4.15a, b )  together with (4.7d, e )  (4.12), (4.14) provide the necessary six equations 
to  fix C,, A,, d,  xl, A, and 0,. Since x1 appears only in equation (4.12) the other five 
equations yield C,, al, d, a,, d, independently of x1 and we find the unique solution 

- 

c 1 --s - S o f m a x ,  2 21 = Efmax,  d = 

(4.16) 

Then (4.12) determines x1 from the relationf(x,) = %fmax. Clearly (4.16) is the direct 
extension of the results in (3.17) (for k 9 i ) ,  generalized to arbitrary smooth shapes of 
indentation [so that, in particular, a refinement of the prediction (4.13) for the separ- 
ation position x = x2 could be made as in (3.17)]. The simple, universal, form of the 
results in (4.16) for smooth moderately severe indentations seems nonetheless in- 
triguing. According to  (4.16) and (4.13), for any value of q the upstream free streamline 
attaches to the indentation a t  the station where the indentation height reaches 40 yo 
of its maximum value, the flow then separates a t  the maximum constriction point, and 
ultimately the downstream free streamline lies a t  a normal distance from the wall of 
120% of the maximum constriction height. Other features, such as wall pressure 
values (see (4.9),  (4.14), (4.16)) and the upstream separation position (see (2.3),  (4.5c),  
(4.16)), are equally striking, as are the relative complexity of the present structure 
(figure 6) and the relative simplicity of the core-flow results ((4.7)-(4.8)) compared 
with the symmetrical-flow case (Smith 1979a). 
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FIGURE 7.  

-1 0 1 qsx 
(a )  The free streamline shape fe (+) compared with the wall shape (m), 
upper and lower wall pressures P,, Pz, versus 3 for the curved channel. 

and ( b )  the 

5. The curved channel 
This section and the next are concerned with two fundamental flow problems which 

involve unbounded non-symmetric distortions of the original channel walls but which, 
nevertheless, are closely related to the theory of $ 3  2 and 3.1 above. 

To be considered first is the flow response due to an abrupt (and severe) curving of 
the channel a t  x = 0, with the lower and upper walls prescribed by y = 0 (x < 0 ) ,  
~ x ~ / 2 ( x  > 0) and y = l(x < 0 ) ,  1 + & K X ~ ( X  > 0 ) ,  respectively; some interesting quali- 
tative comments on this problem were made by Goldstein (1938,  pp. 85-87) ,  while the 
analogous problems for very mild curvatures were analysed by Bates (1978)  in abruptly 
curving channel flow and by Smith ( 1 9 7 6 ~ )  in abruptly curving pipe flow. The constant 
K (  > 0) above is of order unity as far as the Reynolds-number expansion of ( 2 . 1 )  is 
concerned, so that the general approach in 5 2 can be adopted subject to the inclusion 
of the upper-wall distortion. Following some trial and error we conclude that, for a 
moderately severe curving, where 0 < K < 1 ,  the flow separates far upstream a t  the 
lower wall (by means of the free interaction leading to (2 .3 ) - (2 .5c ) )  and remains 
separated there throughout the length scale of present interest (i.e. -Re+ < x < Re), 
whereas the flow a t  the upper wall remains attached throughout (figure 7 ) .  A similar 
conclusion is expected to hold for an extensive range of severe curvatures ( K  = O( 1) ) .  

For 0 < K < 1 the flow solution assumes the long scale structure of $ 3 . 1  but with 
1 being replaced by K-* and f ( X ) ,  g ( X )  both being given by zero for X < 0, ax2 for 
X > 0 (here X = ~ 4 % ) .  Hence A ( X )  satisfies (3.6) again, and, for X < 0, ( 3 . 7 ~ )  gives 
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the solution. For X > 0 we still have f e  = - A ,  PI = 0 but now ge = g = &X2, so that 
A satisfies the equation 

from (3.6). The solution of (5.1) (bounded as X -+ 00) follows by setting A + ax2 = B, 
leaving B governed by (3.9) and its solution (3.10) provided B, q are written now 
instead of A ,  C,. Since no points of separation or reattachment occur on the X = O( 1)  
scale the only (two) conditions necessary are the continuity of A ,  A’ at X = 0; the 
governing equations then guarantee continuity of A”, A”’ there. The two conditions 
impose the two relations 

- ( q / Z ) *  6, = - 12q/d2, ( 5 . 2 ~ )  

- qfZA(2  - 0,) [$(Go + 4)]* = - 24q/d3, (5.26) 

controlling the values of Go( = G a t X  = 0) and d, from (3.7a), (5.1) and (3.91, (3.10). 
The solution of (5.2a, b )  is unique and is 

2qA“ = - ( A  + &Xz)’ (5.1) 

d = 3(2q)f, 6, = $. (5.3) 

The value of d here fixes the upstream separation position, through (3.7b) and (2.3), 
while the 6, value implies that a t  X = 0 the free streamline lies a t  a distance (on the 
Y scale) of g(2q)t from the lower wall. Also, as X -+ co we have 
- 

f e ( X )  = - A ( X )  x gX2+ (2q)*, (5.4) 

so that the free streamline eventually becomes parallel to both walls and its normal 
distance from the lower wall tends to the value (2q)* on the P scale, i.e. (2qlc)* in terms 
of y. Figure 7 presents the solutions for the free streamline shape and the wall pressures, 
which have the asymptotic forms 

Pz+ -4, PI = 0 as X + m .  (5 .5 )  

The persistence of this pressure difference across the downstream channel is required 
to maintain the curved flow there. 

6. The cornered channel 
The final form of severe distortion that we consider concerns a channel suffering an 

abrupt cornering, such that its lower wall is described by y = 0 (x < 0), y = ax (x > 0) 
and its upper wall by y = 1 (x < 0 ) ,  y = 1 +ax (x > 0). Here a( > 0 )  is of O(1) with 
respect to the Reynolds number and so the general theory of Q 2 applies but modified 
owing to the presence of the upper wall distortion and to the corner there (which, as it 
turns out, prescribes a separation point). As in the previous section the upstream 
separation described in $ 2  by (2.3) and (2.4)-(2.5c) is expected to occur along the 
lower wall, of course. However, thereafter several questions immediately arise for the 
subsequent flow development because of the possibility of flow separation a t  the upper 
wall combined with the possibilities of flow reattachments a t  finite distances down- 
stream on both walls (cf. Q 5 ) .  After some trial and error we find that (in the moderately 
severe case a < 1, at least, but probably in the general severe case (a = O(1)) also) 
self-consistency is provided only by the following account which postulates separation 
occurring a t  the upper corner x = 0,  an ensuing reattachment a t  the lower wall, but 
no reattachment (on a finite scale in x) a t  the upper wall: see figure 8. 
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1 I 
-1  0 1 2 4 - f X  - 

FIGURE 8. (a)  The upper (ge) and ( b )  the lower (fe) free streamlines (+) versus S for the cornered 
channel (m). ( c )  The upper and lower wall pressures P2, P,.  

When 0 < a < 1 the long scale response of $ 3. I is called into action, with 1 replaced 
by a-f and f ( S ) ,  g(X) both replaced by zero for X < 0, X for X > 0 (here X = a h ) ,  
leading to equation (3.6) for A ( X ) .  Then for S < 0 the solution is given by ( 3 . 7 ~ ) .  At 
X = 0,  owing to the upper corner, separation takes place a t  the upper wall and only 
three conditions are appropriate, namely, continuity of ge, A and A’ (analogous 
to those of $ 3 . 3 ;  g: is discontinuous). Between there and the reattachment a t  
X = X ,  > 0 along the lower wall, the flow is detached from both walls and hence 
P2 must stay constant (equal to -C2, say, where C2 is unknown) and P, must also 
(remaining zero from ( 3 . 7 ~ ) ) .  So, for 0 < x’ < X, ,  

( 6 . 1 ~ )  

( 6 . l b )  

(only the negative square root of 2C2 in ( 6 . 1 ~ )  yields a solution of the flow problem); 
and, from (3.6), q A ” ( X )  = -Cz, so that 

(6.2) A ( X )  = - - - 2 + p x + y  c2 (0 < x < X,) ,  
2q 
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where /3, y are unknown constants. Finally, for X > X,, where the lower wall flow 
becomes reattached, ( 6 . 1 ~ )  still holds but nowfe(X) =f (X)  = X, implying (from (3.6)) 
the equation 

2qA" = ( A  + - ZC, (6.3) 

for A(X). To solve (6.3) we set A +ax = -B. Then, with B, C2 replacing A ,  C, 
respectively, B ( X )  satisfies (3.9) and so (3.10) gives the solution. The three conditions 
appropriate a t  the reattachment point X = X ,  are the continuity of fe, A and A', as 
in tj 3.1. 

Applying the first three conditions above, a t  X = 0, yields (from (6 . la) ,  (6.2), ( 3 . 7 ~ ) )  

y = - (2C2)t,  y = - 12q/d', P = - 24q/d3, (6.4) 

respectively. The three conditions a t  X = X ,  yield, in turn, 

XI = (C2/2d xz, - PX, - Y , ( 6 . 5 ~ )  

- (C2/%) 1; +PXl+ Y = (C2/2)4 01 - Xl, (6.5b) 

- (C2/q) XI +P = (C2/2)9 (2 - Ql) UQl+ 4)/31* q-* - 1, ( 6 . 5 ~ )  

where G, 5 0 a t  X = X,. Hence (6.4), ( 6 . 5 ~ - c )  provide six equations for the determi- 
nation of X,, P, y ,  C,, Ol, d .  We find the unique solution 

d = 2[3q(l+54)]*, X ,  = 9(5*-2*)d, 0, = 0, C, = 3(5*-1)q/4d (6 .6)  

with (6.4) then fixing /3, y. 
The upper and lower free streamlines (appearing for X > 0 and for X < X, 

respectively) are depicted in figure 8. We note that the normal distance of the upper 
free streamline from the wall is (2C,)* a t  X = X ,  and doubles to 2(2C2)* as X + co. 
The upper and lower wall pressures, P,, P,, are also given in figure 8. Their ultimate 
approach to equality as X + co heralds the onset of the more conventional, boundary 
layer, description while governs (on the O(Re) scale in x) the eventual reattachment 
process and the ensuing attainment of a plane attached flow description far 
downstream. 

Finally i t  seems worthwhile suggesting that a further application of the features of 
this section is to the symmetric motion through the (severe) junction of two equal 
channels converging a t  an angle 2a a t  the point (x, y) = ( 0 , O ) .  There the cornered- 
channel configuration above is reflected about the outer wall (y = ax, x > 0 ) ,  that  wall 
is then replaced by a line of symmetry for the flow, and the solution above (and in 
figure 8) describes half of the symmetrical flow field. The related problem where the 
fluid flow far upstream and downstream is in the direction opposite to that just con- 
sidered yields a severely bifurcating symmetric channel flow, which has been studied 
by Bates ( 1  978) and does not involve the upstream separation implied in the above 
case of the junction. We may expect, however, that the upstream separation would be 
involved in both unequal bifurcations and unequal junctions of channel flows and that 
the general approach of tj 2 and above would apply then. 
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7. Further comments 
The theory of $ 8  3-6 would seem to provide a virtually complete account of the flow 

structure and solution properties for the classes of slowly varying severe, slender and 
moderately severe constriction of $ 3  3, 4 and for the curved and cornered channels of 
$ $ 5 , 6 ,  adding weight to the belief that the general structure of $ 2 provides a consistent 
description of the high-Reynolds-number motion through a severely constricted non- 
symmetric channel. If the conclusions of Smith (1976a, b, 1 9 7 7 ~ )  are also invoked, the 
theoretical flow features associated with almost any size of (smooth) non-symmetric 
constriction of the channel can now be expressed when R e  9 1. 

For example, let us deal first with constrictions of height comparable with the 
channel width but of various lengths, a*L, supposing for argument's sake that the 
constriction is wedge-like (as in $4.1) a t  its start. Then, if L is O ( R e ) ,  the flow field is 
described by the nonlinear boundary-layer equations throughout the channel, on the 
O(a*Re) streamwise length scale (Smith 1976a, b) .  I n  contrast with the flow over the 
constriction (where Eagles & Smith 1980 give some sample numerical solutions 
including separation and reattachment), the flow response upstream is only of a mild, 
linear, kind, taking place on the O(u*R-'.) length scale. If L lies between O ( R e )  and 
O(ReQ) the upstream response is again linear (Smith 1976b) on the O(a*Re+) scale, 
following which the main nonlinear adjustment of the flow occurs on an O(a*LPRe-l) 
streamwise scale. On that scale the constriction acts as a wedge (and $ 4  of Smith 
1976a applies), while on the longer O(a*L)  scale the nonlinear adjustment (including 
separation) becomes inviscid and is described in effect by the properties of (4.3)-(4.4). 
The final adjustment phase, including reattachment and a return to the original 
attached motion, is governed by the O(a*Re) scale downstream. If L is reduced still 
further, to O(Re$),  the upstream response on!the O(a*Re+) scale becomes nonlinear a t  
last and upstream separation can appear (Bates 1978 gives solutions for curved and 
cornered channel flows when L is O(ReS)) ,  while further downstream the O(a*L)  and 
O(a*Re) scales operate as above. A further reduction of L forces the upstream separ- 
ation of Smith (1977a)  to arise and, indeed, if L lies between O(Re%) and O( 1) then $ 4.1 
applies effectively. We would note however that certain stages, such as L = O ( R e h ) ,  
would slightly alter the prediction of the separation position x = x2 in $4.1 (but not the 
overall flow structure) in view of the part played by the O ( R e - h )  powers in the Sychev 
(1972)-Smith (19778) triple-deck separation there (see (2.1) and cf. Smith 19796 for 
external flows); a similar note applies to symmetrically constricted flows also (Smith 
1979a). Finally, when L becomes O( 1 )  the properties of $ 2 are retrieved and in general 
a numerical solution would be required. As a second example, let us consider con- 
strictions of various heights a*h but whose lengths are comparable with the channel 
width. Then, for h of O( 11, the nonlinear properties of $ 2 hold, while slightly reducing 
h brings in the nonlinear features of $ 4.2 including the long scale (O(a*h-4)) responses 
upstream and downstream. A further decrease of h to O(Re-S) means that the main 
nonlinear responses upstream and downstream are dictated by the O(a*Re+) free 
interaction scale (on which the constriction appears as a broadside-on flat plate) and 
in particular the upstream separation distance in (2.3) is reduced by a significant 
fraction. Finally, if h is less than O(Re+) then the O(a*Re)) scale upstream effect is 
only linear, upstream separation is suppressed a t  last, and once again the work of 
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Smith (1976a, b )  can be applied. Clearly, many other combinations of height (a*h) and 
length (a*L) scales can be fitted into the general patterns above. 

For the various classes of severe constriction, cornering and curving studied in this 
paper we would draw attention to the surprisingly succinct nature of some of the 
predictions that emerge for inter aliu separation and reattachment positions. These are 
given by (2.3) with (3.7b), table 1, (4.21, (4.5c), (5.3) and (6.6) for the upstream separ- 
ation, by figures 3 and 4, (4.2) and (4.12) with (4.16) and (6.6) for the first reattachment 
point x = xl, and by figures 3 and 4, (4.4) and (4.13) for the second separation point 
x = x2. Also worthy of emphasis is the relatively complex, long-scale structure 
(involving core-flow perturbations of orders h and h4) of the moderately severely 
constricted motion in 4 4.2 compared with the straightforward structure (and only 
order h2 core flow perturbations) arising in the corresponding symmetric constriction 
(Smith 1979a, 3 3).  The O(h) and O(h4) perturbations here are essentially eigensolutions 
and are associated with the nonlinear eigensolution forms of ( 2 . 5 ~ 4 )  appearing 
upstream. Further, and perhaps equally remarkable, the first reattachment position 
x = x2 and the contribution D to the upstream separation position (of (2.3)) can be 
determined, for the moderately severe case of $4.2,  only by recourse to the long scale 
response both upstream and downstream of the constriction, whereas the second 
separation point is determined by more local considerations. In  all the classes studied 
above, and in the viscous upstream response of Smith ( 1 9 7 7 ~ )  leading to (2.5a-c), 
a decisive part is played by the variation of the pressure across the channel due to the 
curvature of the core flow. 

Whether or not some or all of the predicted flow features of 9 3-6 may be observed 
experimentally or numerically in non-symmetrical channel flows is another matter. 
T. J. Pedley (private communication, 1979) has kindly informed us of some related 
experimental work in progress (at the Department of Applied Mathematics & 
Theoretical Physics, Cambridge) in which, for instance, there is no sign as yet of 
upstream separation over a significant range of Reynolds numbers, for the configur- 
ation of 3 3.3; a similar phenomenon arises in smoothly, symmetrically, constricted 
flows (e.g. in Deshpande, Giddens & Mabon’s 1976 calculations). On the other hand, 
Dennis & Smith’s (1979) numerical flow solutions for a symmetric step-like con- 
striction, and those of Greenspan (1969) and Friedman (1972) (see Smith 1977 a )  for 
non-symmetric steps, show not only the presence of upstream separation but also 
extraordinarily good agreement with the asymptotic theory (Smith 1977a, 1979a) as 
regards the upstream separation position and, in the symmetric case, the flow 
properties nearby. It may well be that, upstream a t  least (as in Smith 1979a), 
the present theory of severely constricted non-symmetric channel flows applies in 
practice to the more abruptly constricted flows, or to higher-Reynolds-number flows, 
whereas less abrupt constrictions and lower Reynolds numbers produce flows to 
which the earlier theories (involving only weak upstream responses: see above) are 
more relevant upstream (while the present theory may still apply during and 
beyond constriction, again as in Smith 1 9 7 9 ~ ) .  More experimental and/or numerical 
results for the configurations considered in $93-6 should help to decide the true 
relevance, qualitatively or quantitatively, of the present asymptotic theory at  finite 
Reynolds numbers, however. 
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